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Abstract  
 
Lateral impedance variations associated with thin beds, 
fluid saturation, and other phenomena can be detected 
when specific phase components are isolated. However, 
accurate, continuous phase measurements of a seismic 
wavelet are more limited in estimating at a given voxel. 
Multiple means exist to decompose a trace and obtain the 
phase components. One way is through phase 
decomposition, which decomposes the seismic amplitude 
volume into different phase components. We showed that 
the Time-Time transform provides an alternative means to 
construct phase components of the seismic amplitude 
volume. Moreover, we propose a methodology to show 
the contribution of the Time-Time transform to achieve 
carbonate geological seismic features detection 
enhancement by applying a deep Variational Autoencoder 
in multi-azimuthal seismic data. So, we consider as input 
multi-channel phase attributes calculated by each 
azimuth. We also compare the results with those obtained 
by applying the methodology using the Continuous 
Wavelet Transform attributes and conventional pre-stack 
azimuthal seismic data. Finally, we use Gaussian Mixture 
Models for clustering and obtain probability density 
functions. This strategy is applied to a Brazilian pre-salt 
reservoir, showing the Time-Time transform contribution 
to accurately recognizing carbonate architectural 
elements such as carbonate mounds. 

Introduction 
 
The studies of geological features' automatic classification 
in seismic data have been the subject of several scientific 
publications (Dumay & Fournier, 1988; Fournier & Derain, 
1995; Johann et al., 2001; Cunha, 2013). The approaches 
are based on statistical techniques that represent 
waveform patterns using the vector information from the 
post-stacked trace (Matos et al., 2010). Furthermore, 
complementary, joint analyses with seismic attributes, 
such as time-frequency domain analysis, can be 
performed to extract characteristics of the seismic signal 
(Matos et al., 2007) and to enhance the recognition of 
small-scale structural and stratigraphic heterogeneities in 
carbonate reservoir environments (Silvany et al., 2021, 
2022). 
Spectral analysis has been applied to detect bright spots 
in the presence of thin beds (Cichostępski et al., 2019; Qi 

et al., 2020). In addition, the complex trace analysis 
(Taner et al., 1979), which can be viewed as a 
composition of the envelope amplitude and phase 
information, also helps to identify small-scale structural 
and stratigraphic heterogeneities by detecting subtle 
magnitude (Bulhões & Amorim, 2005) and phase 
discontinuities due to lateral impedance variations 
associated with thin beds, fluid saturation, and other 
phenomena. 
By interpreting the Time-time Transform (Pinnegar & 
Mansinha, 2003) as a kind of local wavelet seismic trace 
decomposition that, after properly stacked, reconstructs 
the seismic trace, Matos and Marfurt (2022) showed how 
to estimate more accurately the local or instantaneous, 
phase, and use it to decompose the trace into different 
phase components. They also showed that the TT-
transform creates a redundant 2D image from a 1D vector 
that carries important signal features for pattern 
recognition.   
Recently, (Silvany et al., 2019) showed how to combine 
deep autoencoders with clustering algorithms to extract 
seismic facies in multi-azimuth pre-stack seismic data. 
The Deep Convolutional Autoencoder (DCAE) is used to 
learn efficient data encodings, reducing the data 
dimensionality. The latent features generated by the 
DCAE encoder are used as input to the K-means 
algorithm.   
In this paper, we extend the methodology by applying 
Variational Autoencoders (VAE) algorithms considering 
the possibility of jointly using different types of input data, 
such as Time-Time transform gathers, arranged as 
different input channels. The VAE algorithm is an 
unsupervised generative model that also learns efficient 
data encodings from the seismic data as input (Kingma et 
al., 2013). Furthermore, unlike an autoencoder (AE) 
algorithm, the VAE forces the latent variables codes to 
become normally distributed, making the latent space 
more continuous and less sparse (Higgins et al., 2021), 
which brings coded interpretations benefits (Li et al., 
2021). Then, a Gaussian Mixture Model (GMM) is applied 
to fit the data distributions and obtain probability density 
functions. 
This methodology was applied in a pre-salt reservoir from 
Santo's basin, Southeast Brazilian margin. We compare 
the Time-Time transform coding results with those 
obtained by applying the methodology using the 
Continuous Wavelet Transform (CWT) and conventional 
pre-stack seismic data. This strategy shows the Time-
Time transform contribution to recognizing carbonate 
architectural elements such as carbonate mounds 
reservoirs accurately. 
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Geological Context 
 
The reservoir rocks correspond to a Meso-Neo Aptian 
age (117-112 Ma) carbonate platform, seated at the 
culmination of a series of rotated NE-SW and NW-SE 
oriented faulted blocks that compose the Santos Extern 
High (SEH) (Silvany et al., 2022) (Figure 1). In this region, 
the SHE is bounded north and south by a transbacinal 
NW-SE low-relief transfer zone. This condition led to 
deposition showing varying petrophysical characteristics, 
with high to very-high promo-porosities reservoirs 
identified as carbonatic mounds, contrasting with low 
energy facies mainly composed of laminites and 
spherulites. 
The low-energy sedimentary facies are dominantly 
represented by: carbonaceous-siliciclastic mudstone, 
peloid laminate with a crenulate structure, and dolomite-
calcite crust laminate. The Genesis of these fine-grained 
sediments is related to physical (sedimentation), bio-
induced (microbial), and chemical (crust precipitation) 
processes. To a lesser extent, there are shallow water 
facies, formed during the decrease of the lake level and 
footwall uplift, that correspond to incipient microbial 
shrubs to spherulites (in situ deposits), passing laterally to 
ooidal to intraclastic grainstones in a context of relatively 
high energy formed by the action of waves. Also, it occurs 
in hydrothermal environments with travertine production 
with anhedral shrubs, indicative of chemical precipitation. 
Silica cementation occurs mainly as post-depositional 
diagenesis (Silvany et al., 2022). 

 

Figure 1 – South America (SAM) and Africa (SAf) shown 
in a South Atlantic plate reconstruction to 117 Ma. Note 
the intra-basin architecture, with northern compartments 
defined by sigmoidal intra-basin fault trends that separate 
structural lows from structural highs. This region coincides 
with the area occupied by the Aptian Salt basins of the 
Central Atlantic. (Modified from Heine et al., 2013, and 
Araujo et al., 2022). 

Data and Method 
 
The Time-Time transform provides an alternative method 
to estimate local wavelet components of the seismic 
amplitude volume. Indeed, it transforms a seismic trace 
with n samples into a pseudo time gather, or an image, 
with nxn samples, that after stacked reconstructs the 
trace (Matos and Marfurt, 2022). 
In fact, the TT-transform is the last step of the inverse S-
transform smartly rewritten by Pinnegar and Mansinha 
(2003) to operate by this way, that can be attested by 
considering the S-transform (Stockwell et al., 1996) of a 
seismic signal, h(t), as a set of localized time-frequency 
complex functions:  
 

  (1) 
 
and its inverse S-transform that reconstructs the original 
data as 
 

. 
(2) 

 
instead of the original reconstruction property: 
 

. 
(3) 

 
Which shows that the integration of S(t,f) given by 
equation (1) along the time (, or depth) axis gives the 
Fourier transform of the input signal. 
 
Therefore, inspired by the reconstruction property the 
short-time Fourier transform (STFT), Pinnegar and 
Mansinha (2003) noted that the inverse S-transform can 
also be evaluated by changing the order of the double 
integration variables and they defined that the inner 
integral in equation 2 as the TT-transform, which is a two-
dimensional time-to-time representation of the input 
signal: 
 

. 
(4) 

 
By this way, the TT-transform is an invertible time-time 
two-dimensional representation of the seismic data: 
 

 

(5) 

 
Figure 2 shows the S-transform of a synthetic seismic 
trace and its corresponding TT-transform. Note that the 
seismic trace can be perfectly reconstructed by stacking 
the TT-transform columns.  
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Figure 2 - Synthetic trace and its Time-time transform as 
an image and as wiggles (decimated). 

On other hand, frequency-gathers considered in this 
paper are the CWT Voices. The CWT Voices are used to 
create a higher resolution trace and the phase 
discontinuities to detect small scale structural and 
stratigraphic heterogeneities. The Continuous Wavelet 
Transform (CWT) can be interpreted as the cross-
correlation between a signal, f(t), and a family of wavelet 
functions, ψs(t). The wavelet family is built by dilating a 
narrow bandwidth basis function, or “mother wavelet” by a 
suite of scales, s. By properly dilating and compressing a 
mother wavelet we can analyze both broad and narrow 
band signals. 

 

                  (6) 

, 

Where 
   

                      .           (7) 

Goupillaud et al. (1984) showed that the CWT preserves 
the signal energy and is invertible, such that the signal 
can be reconstructed from the CWT coefficients as a 
convolution along the scales plus an integration along 
time, 
 

  (8) 

,            

(4) 
where the constant  is given by 

                       

 (9) 

By choosing symmetrical wavelets, in fact complex 
conjugates wavelets, the CWT cross-correlation 
operation, can be re-written as a convolution, as shown in 
equation (1). The CWT can also be interpreted as a bank 
of pass-band filters, and that the CWT is a joint time-
frequency technique. 

Inspired by the sound recorded on a tape, Goupillaud et 
al., (1984), evaluated the CWT using logarithmic 
frequency scales in voices per octaves, and called as 

Voice Transform. Geophysicists would prefer to interpret 
the CWT inverse transform (equation 4) as a stack of the 
frequency gathers, i.e., CWT Voices, evaluated form the 

CWT transform coefficients: . 
Figure 3 shows how we compute the CWT Voices, as 
frequency gathers, of a Brazilian pre-salt reservoir 
seismic trace in depth. 

 
 
Figure 3 - (a) Seismic trace in depth and its (b) CWT 
magnitude and (c) phase coefficients, evaluated at 8 
voices per octave between 3 and 24 cycles/km. The first 
step of the inverse CWT is the (d) CWT Voices 
computation. (e) By corendering CWT mag and CWT 
Voices, we can clearly see that where the joint depth-
frequency magnitude is high, the amplitude of the voices 
is also high. This is a nice way to confirm the nonlinearity 
filtering ability of the CWT. 

We can assume that the input variables for the deep 
learning model are a set of matrices {Xi, i=1...N}, in the 
space, where N1 is the number of time samples and N2 is 
the number of trances sample (e.g., offsets). To identify 
the facies, we can treat each matrix Xi as a vector and 
apply a clustering method over this set of vectors. 
Clustering means to aggregate the points (vectors) in a 
number k of collections according to certain similarities. In 
this paper, we consider the Gaussian Mixture Model 
(GMM) as a clustering algorithm. The input data are the 
pre-stack seismic data, the Time-Time transform and 
CWT Voices attributes both calculated in the post-stack 
seismic data considering each azimuth. 

The space X has the dimension of all possible gray 
images. However, the actual gathers images used are 
only a small subset of X. Work with a high dimension 
space involves problems known as “curse of 
dimensionality” (Bellman, 1961). So, assuming that the 
real gathers images form a manifold embedded in X, we 
will first transform the data with a nonlinear mapping fθ: X 
→ Z, where θ are learnable parameters and Z is the latent 
feature space. The dimensionality of Z is smaller than the 
X. The set of transformed points {zi} will be the input to 
the clustering algorithm. Thus, the method has two steps: 
(1) the fθ building and (2) the clustering method 
application.  

To parametrize the function fθ, it will be used an Auto-
Encoding Variational Bayes (AEVB) approach, which a 
Stochastic Gradient Variational Bayes (SGVB) estimator 
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to approximate a posterior inference and generate a 
continuous latent space (Kingma et al., 2013, Doersch, 
2016). The process consists of generated a prior 
distribution Pθ ∗ (Z) and a value Xi from some prior 
conditional distribution Pθ ∗ (X|Z). We assume that the 
prior and likelihood come from parametric families of 
distributions Pθ ∗ (Z) and Pθ ∗ (X|Z), and that their PDFs 
are differentiable almost everywhere (Kingma et al., 
2013).  

The variational Autoencoder architecture is composed by 
two subnets (Figure 4). The encoder will refer to the 
probabilistic recognition model fφ(z|x), since given a 
datapoint Xi it produces a distribution (e.g. a Gaussian) 
over the possible values of the code Zi from which the 
datapoint Xi could have been generated. The encoder 
subnet is composed by a sequence of convolutional and 
max pooling layers that is applied over the input as a 
convolution, which permits to identify patterns in the input 
image in a way that is invariant with translation. The max 
pooling layer down samples the input. The encoded 
distributions are chosen to be normal so that the encoder 
can be trained to return the mean (Zmean) and the 
covariance (Zdev) matrix that describe these 
Gaussians and deviation, which are used to obtain the 
latent feature Z = Zmean + Zdev for each input Xi (Figure 4).  

 

Figure 4 The structure of VAE. 

On other hand, the decoder will refer to a probabilistic 
reconstruction model fθ(x|z), since given a code Zi it 
produces a distribution over the possible corresponding 
values of Xi, as similar as possible to the original seismic 
input. The decoder subnet implements an inverted 
pyramid: it is composed by a sequence of upsampling 
and convolution layers. Upsampling layer typically 
doubles the size of the image, assigning to the output 
pixel the nearest pixel of the input.  

The training of the VAE does not depend on labelled data, 
it is an unsupervised learning method. The learning is 
done by minimizing the evidence lower bound (ELBO) 
objective function (equation 1) (Kingma et al., 2013).  The 
ELBO considers two terms: the first term measured the 
differences between the posterior and prior gaussian 
distributions using Kulback-Leibler divergence (KL). This 
term regularizes the organization of the latent space by 
making the distributions returned by the encoder fφ(z|x) as 
close as possible to a standard normal distribution 𝑝𝜃(𝑧). 
The second term measure the reconstruction error for an 
input Xi, where an encoding Z is sampled from fφ(z|xi), 

then the probability density of a perfect reconstruction is 
given by 𝑝𝜃(𝑥i|𝑧). 

ℒ (𝜃, 𝜙; 𝑥) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧)) + 𝐸𝑧∼𝑞𝜙[log𝑝𝜃(𝑥|𝑧)] (eq. 
1) 

Pre-Salt Reservoir Case Study 
 
The project database comprises three conventional non-
dedicated narrow-azimuth seismic surveys with sail-lines 
heads of N90o, N123o, and N158o, respectively. An 
opportunity for jointly processing these three seismic 
volumes was identified, which delivered the pre-stacked 
multi-azimuthal data.  
In this paper, we collected the pre-stack CDP gathers, the 
Time-Time transform, and CWT Voices frequency gathers 
from the three available azimuths (N90o, N123o, and 
N158o) to extract the deep codes Z. The chosen interval 
to select the data comprised the top and base of BVE 
formation and 25 traces according to the input (offsets or 
frequency traces). The feature space is generated as a 
vector space with 32 components (with a dimensionality 
reduction from 625 to 32). Figure 5 shows (a) eight 
examples of panels extracted from the Time-Time 
transform gathers, (b) depth features Z encoded by the 
VAE, and (c) reconstructed images for Azimuth N90o.  
 

 
 
Figure 5 (a) Eight examples of a Time-Time transform 
gathers panels extracted for Azimuth N90o; (b) Eight 
examples of deep features Z encoded by VAE for 
Azimuth N90o; (c) Eight examples of reconstructed 
images for Azimuth N90o. 
 
Figures 6 (a), (b), (c), and (d) show the structural map, 
the obtained seismic facies with VAE applied in the pre-
stack CDP gathers considering azimuths N90o, N123o 
and N158o, Time-Time frequency gathers, and all input 
jointly, respectively. One possible interpretation for these 
maps associates the purple and pink colors regions with 
the mound facies corresponding to carbonatic growths 
near the main syn-rift faults and basement highs 
structures, showing restricted areal distribution and 
chaotic seismic facies in full-stack amplitude migrated 
seismic sections. The facies in orange and yellow are 
related to low-energy facies, which despite their good 
porosities, present very low permeabilities. The facies in 
dark and light green are associated with non-reservoir 
areas (clay deposits).  
The Seismic facies obtained using VAE+GMM by 
considering just the Time-Time transform gathers as input 
(Figure 6c) show facies with a more continuous and 
higher resolution if compared with those obtained by the 
azimuthal pre-stack gathers strategy (Figure 6b). Also, 
recognizing the architectural elements of deep-water 
carbonate deposits, specifically to the mound's edges 
transition to low energy (e.g., laminites) or deep waters 
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deposits (e.g., magnesium clay), are more consistent with 
the depositional facies identified by the wells. For 
instance, well A identified talc-like stevensite layers 
related to low-energy depositional environments. These 
minerals are associated mainly with lacustrine deposits in 
distal settings, while well B identified higher energy 
carbonates from the BVE (shrubs, stromatolites) (Figure 
6). Figure 7 shows the related input data for each centroid 
associated with the seismic facies from Figure 6C. 
 

 
Figure 6 (a) Structural map of BVE Formation top; (b) Six 
facies map obtained by VAE+GMM in three pre-stack 
CDP gathers (N90o, N123o and N158o); (c) Six facies 
map obtained by VAE+GMM in three Time-Time 
transform gathers channels; (d) Six facies map obtained 
by VAE+GMM in three pre-stack and Time-Time 
transform gathers. 
 
Nevertheless, the classification of different facies 
obtained by VAE+GMM applied considering the Time-
Time phase gathers, CWT Voices, and pre-stack CDP 
gathers are more geologically consistent. Also, the results 
show higher resolution, indicating that, despite the 
redundancy, using different attributes allowed improved 
geophysical interpretation. Redundancy plays an 
important role due to the limited capacity in computational 
time and architecture learning using deep-learning 
models. Figure 8 shows the probabilities maps associated 
with the seismic facies map from Figure 6d. 
 

 
 
Figure 7 (a) Time-Time transform input gathers for each 
centroid related with the seismic facies shown in Figure 
6c. 

 

 
 
Figure 8 (a) (b) Probabilities maps associated with the 
Mound facies; (c) (d) Probabilities maps associated with 
low energy facies; (d) (e) Probabilities map associated 
with lacustrine clay deep water deposits. 
 
 
Conclusions 
 
Characterizing pre-salt carbonate reservoir seismic facies 
is a complex process involving uncertainties that shall 
impact, for instance, non-optimal well locations of the 
proposed drainage plan. Using VAE in-depth features as 
input to a clustering method can be obtained seismic 
facies map using the richness of the pre-stack data. The 
Time-Time transform gathers improved the recognition of 
small-scale structural and stratigraphic heterogeneities. 
Although, the classification of facies using multi-attributes 
as input is more geologically consistent and shows higher 
resolution. The redundancy plays an important role due to 
the limited capacity in computational time and architecture 
learning using deep-learning models. Furthermore, the 
results allowed improved geophysical interpretation and 
brought new insights into the reservoir depositional 
system. 
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